Так как точка о принадлежит биссектрисе угла а, то она … от сторон ав и ас так как точка о принадлежит биссектрисе угла в, то она … от сторон ва и вс так как точка о принадлежит биссектрисе угла с, то она … от сторон ас и вс !
Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16
Вся окружность, включающая искомую дугу L равна C=2πR=6,283*√21=28,79. Если рассматривать заданные стороны тупого угла а=3 и b=6, как хорды центральных углов окружности α и β соответственно, то как известно a=2Rsin(α/2), b=2Rsin(β/2). Отсюда следует sin(α/2)=3/9,17=0,327, α/2=19, α=38 sin(β/2)=6/9,17=0,654, β/2=41, β=82, α+β=120 . Величина угловой меры дуги, на которую опирается вписанный тупой угол 120 градусов равна 120*2=240. При длине всей окружности С=28,79, искомая ее часть L=(2/3)28,79=19,19.
Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16
Если рассматривать заданные стороны тупого угла а=3 и b=6, как хорды
центральных углов окружности α и β соответственно, то как известно
a=2Rsin(α/2), b=2Rsin(β/2). Отсюда следует sin(α/2)=3/9,17=0,327, α/2=19, α=38
sin(β/2)=6/9,17=0,654, β/2=41, β=82, α+β=120 . Величина угловой меры дуги, на которую опирается вписанный тупой угол 120 градусов равна 120*2=240.
При длине всей окружности С=28,79, искомая ее часть L=(2/3)28,79=19,19.