1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник (свойство) => ВС=ВF=5.
AD=BC=5 (противоположные стороны параллелограмма). KD= КА+AD=4+5 = 9.
Треугольники KAF и KDC подобны (так как AF параллельна DC). Из подобия: KD/KA=CD/AF.
CD=AB, AF=x, CD=5+x. Тогда 9/4=(5+x)/x. =>
х = 4. АВ=CD=4+5=9.
Или так:
КА параллельна ВС => <CKA=<BCK как накрест лежащие. <KFA=<BFC (вертикальные)=<BCF =>
Треугольник KAF равнобедренный и AF=КА=4.
АВ=CD=5+4=9.
ответ: АВ=CD = 9. BC=AD=5.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).