Меншою діагоналлю паралелепіпеда буде та, яка проектується на меншу діагональ основи, тобто та, що лежить проти кута 45°. Отже менша діагональ основи ВD, а менша діагональ паралелепіпеда В1D = 7 см.
Т.к. прямая ВЕ построена параллелно CD, то BCDE - параллелограмм, противоположные стороны параллелограмма равны, т.е. BC=ED, BE=CD, т.к. ВС=7см (по условию задчи), то ED=7см, Большее основание траеции AD=AE+ED,
AD=4+7=11 см
Средняя линия трапеции d=(AD+BC)/2
d=(11+7)/2=9 см
Периметр трапеции Р=AB+BC+CD+AD
Т.к. периметр треугольника ABE равен 17 см, то АВ+ВЕ=17-4=13см, т.к. ВЕ=CD, то AB+CD=13см
Так як паралелепіпед прямий, то ∆ ВDВ1 прямокутний з гіпотенузою В1D. За теоремою Піфагора знайдемо висоту В1В паралелепіпеда: В1В2 = В1D2 – BD2 = 72 – 13 = 49 – 13 = 36. В1В = 6 см. SABCD = AB ∙ AD ∙ sin ∠BAD = 2√2 ∙ 5 ∙ √2 2 = 10 (см2).
Знаходимо об’єм паралелепіпеда: V = SABCD ∙ BB1 = 10 ∙ 6 = 60 (см3).
Нехай АВ = 2√2 см, АD = 5 см, ∠BAD = 45°.
Меншою діагоналлю паралелепіпеда буде та, яка проектується на меншу діагональ основи, тобто та, що лежить проти кута 45°. Отже менша діагональ основи ВD, а менша діагональ паралелепіпеда В1D = 7 см.
За теоремою косинусів:
ВD. BD2 = AB2 + AD2 – 2 ∙ AB ∙ AD ∙ cos∠BAD = = (2√2)2 + 52 – 2 ∙ 2√2 ∙ 5 ∙ cos45° = = 8 + 25 - 20√2 ∙ √2 2 = 33 – 20 = 13.
.
Объяснение:
Т.к. ABCD - трапеция, то ВС параллельно AD,
Т.к. прямая ВЕ построена параллелно CD, то BCDE - параллелограмм, противоположные стороны параллелограмма равны, т.е. BC=ED, BE=CD, т.к. ВС=7см (по условию задчи), то ED=7см, Большее основание траеции AD=AE+ED,
AD=4+7=11 см
Средняя линия трапеции d=(AD+BC)/2
d=(11+7)/2=9 см
Периметр трапеции Р=AB+BC+CD+AD
Т.к. периметр треугольника ABE равен 17 см, то АВ+ВЕ=17-4=13см, т.к. ВЕ=CD, то AB+CD=13см
Периметр трапеции Р=AB+CD+AD+ВС=13+11+7=31см
ответ d=9 см, Р=31см