Свойство: Средняя линия треугольника соединяет середины двух сторон, параллельна третьей стороне и равна ее половине. EF - средняя линия. Значит АEFВ - трапеция, в которой CВ=2ЕF. Свойство: Если в трапецию вписана окружность, то сумма оснований трапеции равна сумме ее боковых сторон. Итак, ВС+EF=CE+FB. Но EF=(1/2)*ВС, а СЕ+FB=(1/2)*(АВ+АС). Значит (3/2)*ВС=(1/2)*(АВ+АС) или 3ВС=АВ+АС. АВ+АС+ВС=24 (дано). Тогда 4ВС=24, а ВС=6. Sabc=(1/2)*ВC*h=(1/2)*6*8=24.(так как h=2*d=8, поскольку EF - средняя линия и делит h пополам. Половина же высоты - это в нашем случае диаметр вписанной окружности). По Герону: Sabc=√[p(p-a)(p-b)(p-c). Или S²=12(12-a)(12-b)(12-6). То есть 24²=12*6*(12-a)(12-b) или 8=(12-a)(12-b). Но a+b+c=24, а с=6, значит a+b=18. тогда b=18-a. Подставляем это значение в выражение 2=(12-a)(12-b) и получаем: 8=(12-a)(а-6). Имеем квадратное уравнение: а²-18а+80=0, откуда а1=10, а2=8 и b1=8, b2=10.
Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Значит АEFВ - трапеция, в которой CВ=2ЕF.
Свойство:
Если в трапецию вписана окружность, то сумма оснований трапеции равна сумме ее боковых сторон.
Итак, ВС+EF=CE+FB. Но EF=(1/2)*ВС, а СЕ+FB=(1/2)*(АВ+АС).
Значит (3/2)*ВС=(1/2)*(АВ+АС) или 3ВС=АВ+АС.
АВ+АС+ВС=24 (дано). Тогда 4ВС=24, а ВС=6.
Sabc=(1/2)*ВC*h=(1/2)*6*8=24.(так как h=2*d=8, поскольку EF - средняя линия и делит h пополам. Половина же высоты - это в нашем случае диаметр вписанной окружности).
По Герону: Sabc=√[p(p-a)(p-b)(p-c). Или S²=12(12-a)(12-b)(12-6).
То есть 24²=12*6*(12-a)(12-b) или 8=(12-a)(12-b).
Но a+b+c=24, а с=6, значит a+b=18. тогда b=18-a.
Подставляем это значение в выражение 2=(12-a)(12-b) и получаем:
8=(12-a)(а-6). Имеем квадратное уравнение:
а²-18а+80=0, откуда а1=10, а2=8 и b1=8, b2=10.