Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Полуплоскости называются гранями , а ограничивающая их прямая - ребром двугранного угла Линейный угол двугранного угла - угол, образованный двумя плупрямыми, по которым плоскость, перпендикулярная ребру двугранного угла пересекает его грани по двум полупрямым Мера двугранного угла не зависит от выбора линейного угла . Трехгранным уголм (abc) называется фигура, составленная из 3 плоских углов (ab),(bc),(ac). Эти углы называются гранями трехгранного угла, а их стороны - ребрами . Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются дву гранными углами трехгранного угла . Аналогично определяется понятие многогранного угла (A1A2A3...An) - как фигуры, составленной из плоских углов (A1A2),(A2A3)...(AnA1). Многогранником называется тело, поверхность которо го состоих из конечного числа плоских многоугольни ков. Многогранник называется выпуклым , если он расположен по одну сторону плоскости каждого плоского многоугольника на его пов-ти. Общая часть такой плоскости и пов-ти выпуклого многогранника называется гранью . Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника 2Призмой называется многогранник, который состоит из 2х плоских многоугольников, совмещаемых парал. переносом, и всех отрезков, соед. соотв. точки этих многоугольников. Основания призмы равны т.к. пар. пер. = движ. Многогранники называются основаниями призмы, а отр езки, соед. соотв. вершины - боковыми ребрами призмы . У призмы основания лежат в || плоскостях. Боковые ребра || и =. Боковая пов-ть сост. из параллелограммов . Высота призмы - расстояние, между полск. ее основ. Диагональ - отрезок, соед. 2 верш. не принадл 1 гр Диагональное сечение - сечение плоск. кот. прох. через боковых ребра, не принад. 1 грани. У прямой призмы - боков. ребра + основ. (наклонн.) Прямая призма - правильная , если ее основ, являют. правильными многоугольниками. Площадью боковой пов-ти призмы назыв. сумму площад боковых граней. Полная поверхность призмы = сумме боковой пов-ти и площадей основания. n - грани, диаг=n-3/(n-3)n (на одн./всего)
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.
MN - средняя линия треугольника АВС, значит MN║AC и MN = AC/2 = 42/2 = 21 см
NK- средняя линия треугольника BCD, значит NK║BD и NK = BD/2 = 38/2 = 19 см
КР - средняя линия треугольника ADC, значит КР║АС и КР = АС/2 = 42/2 = 21 см
РМ - средняя линия треугольника ABD, значит РМ║BD и РМ = BD/2 = 38/2 = 19 см
MNKP - параллелограмм, так его противоположные стороны равны.
Pmnkp = (MN + NK) · 2 = (21 + 19) · 2 = 40 · 2 = 80 cм
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.