Высота равнобедренного треугольника, проведенная к основанию, делит равнобедренный треугольник на два прямоугольных треугольника. И является биссектрисой угла при вершине. Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°). Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180° х+ х+2·(х-15°)=180° 4х=210° х=52,5° х-15°=52,5-15=37,5° Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой. ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
3. 1. Неверно. В равнобедренном треугольнике могут совпадать высота и медиана только из одной вершины. Из всех вершин они совпадают только в равностороннем треугольнике.
3.2. Верно. Если биссектриса делит противоположную сторону на равные отрезки, то она еще и медиана. Такой треугольник равнобедренный.
3.3. Верно. В равностороннем треугольнике высоты и биссектрисы, проведенные из каждой вершины, совпадают.
4. Биссектрисы треугольника пересекаются в одной точке. Следовательно, FО - биссектриса.
___
5. Если АF=FC, то BF- еще и медиана. Высота и медиана совпадают в равнобедренном треугольнике.⇒ ВС=ВА=7 см.
6. EF = FK, BF – высота⇒
Треугольник КВЕ равнобедренный. Решения нет, по одной только высоте найти основание треугольника нельзя.
7. Основание равно разности между периметром и суммой боковых сторон. 12-(5+5)=2 см.
Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°).
Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180°
х+ х+2·(х-15°)=180°
4х=210°
х=52,5°
х-15°=52,5-15=37,5°
Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой.
ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
3. 1. Неверно. В равнобедренном треугольнике могут совпадать высота и медиана только из одной вершины. Из всех вершин они совпадают только в равностороннем треугольнике.
3.2. Верно. Если биссектриса делит противоположную сторону на равные отрезки, то она еще и медиана. Такой треугольник равнобедренный.
3.3. Верно. В равностороннем треугольнике высоты и биссектрисы, проведенные из каждой вершины, совпадают.
4. Биссектрисы треугольника пересекаются в одной точке. Следовательно, FО - биссектриса.
___
5. Если АF=FC, то BF- еще и медиана. Высота и медиана совпадают в равнобедренном треугольнике.⇒ ВС=ВА=7 см.
6. EF = FK, BF – высота⇒
Треугольник КВЕ равнобедренный. Решения нет, по одной только высоте найти основание треугольника нельзя.
7. Основание равно разности между периметром и суммой боковых сторон. 12-(5+5)=2 см.
Подробнее - на -
Объяснение: