Точка дотику кола, що вписане в рівнобедренний трикутник, ділить бічну сторону на відрізки 4 см і 6 см, рахуючи від основи. Знайдіть периметри трикутника.
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
основания трапеции параллельны, т.е. для них перпендикуляр общий...
этот перпендикуляр будет состоять из двух высот для треугольников,
опирающихся на основания трапеции...
одно основание меньше, другое больше --- это дано)))
треугольники, опирающиеся на основания трапеции подобны --- у них
равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции)))
следовательно, существует коэффициент подобия,
равный отношению сторон, в том числе и оснований трапеции...
k = a / b, a < b ---> k ≠ 1
этот же коэффициент связывает и высоты подобных треугольников,
и получим, что в меньшем треугольнике и высота меньше)))
ЧиТД