1. ΔАОВ: ∠АОВ = 90°, АВ = АО/ cos60° = 2 см АВ = АС = 2 см ΔАВС: ∠САВ = 90°, по теореме Пифагора ВС = √(АВ² + АС²) = √(4 + 4) = 2√2 см
2. ΔАВС равносторонний, так как АВ = АС = 2 см и ∠ВАС = 60°, ⇒ ВС = 2 см ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = 2/√2 = √2 см ΔАОВ: по теореме Пифагора АО = √(АВ² - ОВ) = √(4 - 2) = √2 см
3. ΔАВС равносторонний, так как АВ = АС и ∠ВАС = 60°, ⇒ ВС = АВ = АС = х ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = х/√2 ΔАОВ: cos∠ABO = OB/AB = x/√2 / x = 1/√2 = √2/2, ⇒ ∠ABO = 45° ∠ACO = ∠ABO = 45° так как ΔАОВ = ΔАОС.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.
АВ = АС = 2 см
ΔАВС: ∠САВ = 90°, по теореме Пифагора
ВС = √(АВ² + АС²) = √(4 + 4) = 2√2 см
2. ΔАВС равносторонний, так как АВ = АС = 2 см и ∠ВАС = 60°, ⇒
ВС = 2 см
ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС.
ΔОВС - прямоугольный, равнобедренный, значит
ВС = ОВ√2
ОВ = ВС/√2 = 2/√2 = √2 см
ΔАОВ: по теореме Пифагора
АО = √(АВ² - ОВ) = √(4 - 2) = √2 см
3. ΔАВС равносторонний, так как АВ = АС и ∠ВАС = 60°, ⇒
ВС = АВ = АС = х
ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС.
ΔОВС - прямоугольный, равнобедренный, значит
ВС = ОВ√2
ОВ = ВС/√2 = х/√2
ΔАОВ: cos∠ABO = OB/AB = x/√2 / x = 1/√2 = √2/2, ⇒
∠ABO = 45°
∠ACO = ∠ABO = 45° так как ΔАОВ = ΔАОС.