Отрезки касательных к окружности, проведенных из одной точки, равны. Рассмотрим рисунок, данный в приложении. Как равные отрезки из одной точки, ВК=ВЕ=5 см АК=АН=1 см Центр окружности лежит на биссектрисе угла, радиус и касательная - перпендикулярны, ⇒ точка касания окружности и основания треугольника - основание высоты, которая в равнобедренном треугольнике еще и биссектриса и медиана. Следовательно, НС=НА=СЕ=1 Периметр треугольника равен сумме отрезков, на которые окружность в точках касания делит его стороны. Р=10+4=14 см
Рассмотрим рисунок, данный в приложении.
Как равные отрезки из одной точки, ВК=ВЕ=5 см
АК=АН=1 см
Центр окружности лежит на биссектрисе угла, радиус и касательная - перпендикулярны, ⇒ точка касания окружности и основания треугольника - основание высоты, которая в равнобедренном треугольнике еще и биссектриса и медиана.
Следовательно, НС=НА=СЕ=1
Периметр треугольника равен сумме отрезков, на которые окружность в точках касания делит его стороны.
Р=10+4=14 см