Точка дотику вписаного у прямокутний трикутник кола, ділить його гіпотенузу на відрізки у відношенні 3: 2. обчисліть периметр трикутника, якщо його гіпотенуза дорівнює 20 см.
Я в качестве угла величиной 150° принял угол(ABC) , т.е . угол(ABC) =α =150°; обозначим AB =а=6 см и BC=6√3см ,высота BB₁=H , тогда площадь полной поверхности призмы будет S = 2absinα +2(a+b)*H=2*6*6√3in150° +2(6+6√3)*H = = 2*6*6√3in(180°-30°) +12(1+√3)*H = 2*6*6√3in30° +12(1+√3)*H = =2*6*6√3*1/2 +12(1+√3)*H = 36√3+12(1+√3)*H остатся определить высоту призмы H Из Δ B₁BD : H =BD*tq30°=sqrt(a² +b² - 2abcos30° )*tq30° =sqrt(6²+(6√3)² -2*6*6√3*√3/2)*√3= = 6*√3/3 = 2√3 поэтому окончательно получаем S = 36√3+12(1+√3)*2√3 = 72 +60√3 (см²) или 12(6+5√3)
т.е . угол(ABC) =α =150°;
обозначим AB =а=6 см и BC=6√3см ,высота BB₁=H ,
тогда площадь полной поверхности призмы будет
S = 2absinα +2(a+b)*H=2*6*6√3in150° +2(6+6√3)*H =
= 2*6*6√3in(180°-30°) +12(1+√3)*H = 2*6*6√3in30° +12(1+√3)*H =
=2*6*6√3*1/2 +12(1+√3)*H = 36√3+12(1+√3)*H
остатся определить высоту призмы H
Из Δ B₁BD :
H =BD*tq30°=sqrt(a² +b² - 2abcos30° )*tq30° =sqrt(6²+(6√3)² -2*6*6√3*√3/2)*√3=
= 6*√3/3 = 2√3 поэтому окончательно получаем
S = 36√3+12(1+√3)*2√3 = 72 +60√3 (см²) или 12(6+5√3)
a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)