1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Один угол параллелограмма больше другого на 78 градусов. Найдите больший угол ответ дайте в градусах.
По признаку параллелограмма - противоположные углы параллелограмма одинаковые. Значит:
∠DAB = ∠DCB и ∠ADC = ∠CDA.
Пользуясь еще одним важным свойством параллелограмма - сумма углов параллелограмма прилегающих к любой стороне равна 180° - составим уравнение.
Пусть меньший угол параллелограмма - x градусов. Тогда больший - (x+78) градусов. Так как их сумма 180° имеем:
x + x + 78 = 180
2x = 180 - 78
2x = 102
x = 102 : 2
x = 51
Таким образом меньший угол фигуры равен 51°.
Тогда больший: 51 + 78 = 129°
ответ: 129°
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).