я бы пошёл таким путём: очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12 откуда мы можем найти угол МСА (по теореме синусов, хотя бы) теперь рассмотрим треугольник ЕОС (О - центр окружности) он равнобедренный со сторонами ОЕ и ОС по 6 можем найти его углы ЕСО = МСА СЕО = ЕСО = МСА ЕОС = 180 - 2*МСА теперь рассмотрим треугольник ЕОА он тоже равнобедренный со сторонами ЕО и АО по 6 и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА) по теореме косинусов можем найти противоположную сторону АЕ всё
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4)
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теперь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5)центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы, поэтому радиус равен двум радиус вписанной в шестиугольник окружности r=(a*корень из 3)/2 отсюда выражаем сторону a=2r/(корень из 3) подставим занчение радиуса a=4/(корень из 3)
я бы пошёл таким путём:
очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12
откуда мы можем найти угол МСА (по теореме синусов, хотя бы)
теперь рассмотрим треугольник ЕОС (О - центр окружности)
он равнобедренный со сторонами ОЕ и ОС по 6
можем найти его углы
ЕСО = МСА
СЕО = ЕСО = МСА
ЕОС = 180 - 2*МСА
теперь рассмотрим треугольник ЕОА
он тоже равнобедренный со сторонами ЕО и АО по 6
и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА
теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА)
по теореме косинусов можем найти противоположную сторону АЕ
всё
1)Площадь=60. Периметр = 34
2)S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4)
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теперь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5)центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы, поэтому радиус равен двум
радиус вписанной в шестиугольник окружности r=(a*корень из 3)/2 отсюда выражаем сторону a=2r/(корень из 3)
подставим занчение радиуса a=4/(корень из 3)