ОА - половина диагонали квадрата АВСD. Тогда вся диагональ АС = 2sqrt(2). Посвойству правильного 4-х угольника, сторона квадрата в sqrt(2)рах меньше его диагонали. Тогда а=АВ=2.
Р = 4а = 4*2=8
Пусть SК - апофема l. ОК - проекция апофемы на плоскость основания. ОК = 0,5 АВ = 2:2=1. Из треугольника SOK (угол SOK = 90 град)по теореме Пифагора: SK= sqrt(6+1)=sqrt(7)
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
а)ИЗ треугольника AOS(угол О=90 град.): SA = SO:cosSAO = sqrt(6): cos60 = sqrt(6):0,5 = 2sqrt(6).
б) Sбок = Pl / 2.
Необходимо найти апофему l и сторону основания.
ИЗ треугольника AOS(угол О=90 град.): ОА=SO: tg SAO = sqrt(6): sqrt(3)=sqrt(2)/
ОА - половина диагонали квадрата АВСD. Тогда вся диагональ АС = 2sqrt(2). Посвойству правильного 4-х угольника, сторона квадрата в sqrt(2)рах меньше его диагонали. Тогда а=АВ=2.
Р = 4а = 4*2=8
Пусть SК - апофема l. ОК - проекция апофемы на плоскость основания. ОК = 0,5 АВ = 2:2=1. Из треугольника SOK (угол SOK = 90 град)по теореме Пифагора: SK= sqrt(6+1)=sqrt(7)
Sбок = 8*sqrt(7) / 2 = 4sqrt(7).
Объяснение:
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.