Точка K вне плоскости треугольника ABC,E и F середины отрезков KA и KC .Докажите, что отрезок EF равен и параллелен средней линии треугольника ABC.Как расположены прямые EM и FP
Линейный угол двугранного угла --это угол между перпендикулярами, лежащими в гранях угла, опущенными на линию пересечения плоскостей=граней двугранного угла (на ребро двугранного угла) по построению AH _|_ (a), BH _|_ (a), угол АНВ = 60° ----------------------------------------------------------------------------- расстояние от точки Т до плоскости (грани двугранного угла) --это перпендикуляр из точки на плоскость ТВ _|_ (альфа) ---> TB _|_ BH аналогично, TA _|_ AH TA=TB по условию ----------------------------- TH --это будет расстояние от точки до прямой (тоже перпендикуляр))) TH _|_ (a) по теореме о трех перпендикулярах ТН=10 по условию ----------------------------- точка, равноудаленная от сторон угла лежит на биссектрисе угла угол ТНВ=30° катет, лежащий против угла в 30 градусов равен половине гипотенузы))) ТВ=ТА=5
Пусть 43% раствора кислоты было х кг, а 89% раствора кислоты у кг. Тогда для первого случая, приравняем процентный состав кислот х*43/100+у*89/100=69/100*(х+у+10) или 0,43х+0,89у=0,69(х+у+10) По второму случаю х*43/100+у*89/100+50/100*10=73/100*(х+у+10) или 0,43х+0,89у+0,5*10=0,73(х+у+10) Составим и решим систему уравнений: 0,43х+0,89у=0,69(х+у+10) 0,43х+0,89у+0,5*10=0,73(х+у+10)
по построению AH _|_ (a), BH _|_ (a), угол АНВ = 60°
-----------------------------------------------------------------------------
расстояние от точки Т до плоскости (грани двугранного угла) --это перпендикуляр из точки на плоскость
ТВ _|_ (альфа) ---> TB _|_ BH
аналогично, TA _|_ AH
TA=TB по условию
-----------------------------
TH --это будет расстояние от точки до прямой (тоже перпендикуляр)))
TH _|_ (a) по теореме о трех перпендикулярах
ТН=10 по условию
-----------------------------
точка, равноудаленная от сторон угла лежит на биссектрисе угла
угол ТНВ=30°
катет, лежащий против угла в 30 градусов равен половине гипотенузы)))
ТВ=ТА=5
Пусть 43% раствора кислоты было х кг, а 89% раствора кислоты у кг.
Тогда для первого случая, приравняем процентный состав кислот х*43/100+у*89/100=69/100*(х+у+10) или 0,43х+0,89у=0,69(х+у+10)
По второму случаю х*43/100+у*89/100+50/100*10=73/100*(х+у+10) или
0,43х+0,89у+0,5*10=0,73(х+у+10)
Составим и решим систему уравнений:
0,43х+0,89у=0,69(х+у+10)
0,43х+0,89у+0,5*10=0,73(х+у+10)
0,43х+0,89у=0,69х+0,69у+6,9
0,43х+0,89у+5=0,73х+0,73у+7,3
0,89у-0,69у+0,43х-0,69х=6,9
0,43х-0,73х+0,89у-0,73у=7,3-5
0,2у-0,26х=6,9
0,16у-0,3х=2,3
0,2у=6,9+0,26х
0,16у-0,3х=2,3
у=34,5+1,3х
0,16(34,5+1,3х)-0,3х=2,3
5,52+0,208х-0,3х=2,3
0.092x=3.22
X=35 кг вес 43% раствора кислоты.
ответ для получения смеси взяли 35 кг 43% раствора кислоты.