Точка касания вписанной в равнобедренный треугольник окружности делит его боковую сторону на отрезки,
1) разность которых равна 1 см (меньший отрезок при.
к углу при основании). Найдите стороны этого треугольника
ка, если его периметр равен 32 см.
2) пропорциональные числам 3 и 2 (считая от вершины
тиволежащей основанию). Найдите стороны этого треугольника
, если его периметр равен 1,12 м.
б)∠O₁MO₂=∠O₁MS+∠O₂MT+∠SMT. Но ∠SMT=∠ABC (т.к. SBTM - параллелограмм), ∠TMO₂=∠SO₁M (т.к. треугольники O₁SM и MTO₂ равны), значит, ∠O₁MO₂=∠O₁MS+∠SO₁M+∠ABC=
=180°-∠O₁SM+∠ABC=180°-(90°+∠ABC)+∠ABC=90°.
Решение задачи указывает на некорректность её условия. Возможно, так и было задумано, чтобы найти в нём ошибку.
———
ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок перпендикулярен любой прямой, проходящей в этой плоскости через В1.
BD=6√2 по условию.
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD и C1D⊥DA, и проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD - прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – В1D и является гипотенузой
треугольника В1АD с прямым углом А.
B1D=AD:cos60°=6:1/2=12 (ед. длины)
———————
Мы получили проекцию наклонной, которая имеет большую длину, чем сама наклонная ВD. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может.
Но если
а) величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
или
б) угол В1DB=60° - В1D=3√2– тоже допустимый результат.