Точка М делит отрезок в отношении 2:1, начиная от точки Р. Найдите координаты точки Р если точки М и К имеют соотвсоответсвенно координаты M(2;1), K(3;5)
Рассмотрим треугольники АВС и АВЕ. У них угол В- общий, угол ВАЕ=углу ВСА. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Тогда АВ:АЕ=ВС:АВ АВ²=АЕ*ВС АВ³=4*(4+12)=64 АВ=√64=8 см Площадь треугольника равна половине произведения его высоты на сторону, к которой эта высота проведена. Опустим высоту СН на прямую ВА, содержащую сторону АВ треугольника. . Треугольник СВН - прямоугольный, где СН - катет, противолежащий углу 30°. СН=ВС:2=8 см S (АВС)=СН*АВ:2=8*8:2=32 см²
А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.
У них угол В- общий, угол ВАЕ=углу ВСА.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Тогда АВ:АЕ=ВС:АВ
АВ²=АЕ*ВС
АВ³=4*(4+12)=64
АВ=√64=8 см
Площадь треугольника равна половине произведения его высоты на сторону, к которой эта высота проведена.
Опустим высоту СН на прямую ВА, содержащую сторону АВ треугольника. .
Треугольник СВН - прямоугольный, где СН - катет, противолежащий углу 30°.
СН=ВС:2=8 см
S (АВС)=СН*АВ:2=8*8:2=32 см²