точка М находится на расстоянии 13 см от каждой стороны правильного треугольника АВС, сторона которого равна 24√3 см. на каком расстоянии (в см) от площади треугольника АВС находится точка М?
Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Построим параллелограмм АВСД проведем диагонали АС и ВД так что цент пресечения диагоналей О удален от стороны АВ на 2 см от стороны ВС на 3 см. Так как точка пресечения диагоналей является центром симметрии параллелограмма, то высота параллелограмма к стороне АВ равна 2*2=4 см, а к стороне ВС 3*2=6 см. Площадь параллелограмма равна S= a*h (где а – сторона h – высота проведенная к ней). Выразим из этой формулы строну а=S/h Сторона АВ=24/4=6 см Сторона ВС=24/6=4 см Периметр параллелограмма равен P=(a+b)*2 (где а и в стороны параллелограмма) P=(AB+BC)*2=(6+4)*2=20 см
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Так как точка пресечения диагоналей является центром симметрии параллелограмма, то высота параллелограмма к стороне АВ равна 2*2=4 см, а к стороне ВС 3*2=6 см.
Площадь параллелограмма равна S= a*h (где а – сторона h – высота проведенная к ней).
Выразим из этой формулы строну а=S/h
Сторона АВ=24/4=6 см
Сторона ВС=24/6=4 см
Периметр параллелограмма равен P=(a+b)*2 (где а и в стороны параллелограмма)
P=(AB+BC)*2=(6+4)*2=20 см