объяснение:
спершу знайдемо периметр мешого трикутника, сторони якого відомі:
Р = 3+5+7=15
потім поділимо периметр більшого трикутника на периметр меншого трикутника ( так дізнаємось у скільки разів більший трикутник ):
75:15= 5
трикутник більший у 5 разів, а отже
3*5=15
5*5=25
7*5=35
Також є другий б розвязування, через х:
нехай менший трикутник буде 3+5+7, а більший 3х+5х+7х, тоді
3+5+7=15,а 3х+5х+7х=75, тут так само 75:15= 5, - це шуканий х
відповідь та сама.
(Якщо не складно, поставте найкращу відповідь)
Объяснение:
Дано:
Окружность (O;r)
4-угольник ABCD - вписан в (O;r)
продолж.ВА пересек. продолж. CD в т. К.
Доказать:
∆BКС ~ ∆DКA
Доказательство:
Если 4-угольник можно вписать в окружность =>
=> сумма двух противоположных углов равна 180°:
Обозначим для удобства
Обратим внимание, что прямые КВ и КС можно расценивать как развернутые (180°) углы: уг.KAB и уг.КDC
Представив развернутые углы KAB и КDС,как сумму углов, их составляющих
(КАD + BAD и КDA + CDA соответственно) ,
выразим через них углы КAD и КDA:
А это означает, что:
Также, вследствие того что:
(по сути, АВС и КВС - это один и тот же угол,
DCA и КСА - аналогично).
Рассмотрим ∆BКС и ∆DКA:
Что и требовалось доказать.
объяснение:
спершу знайдемо периметр мешого трикутника, сторони якого відомі:
Р = 3+5+7=15
потім поділимо периметр більшого трикутника на периметр меншого трикутника ( так дізнаємось у скільки разів більший трикутник ):
75:15= 5
трикутник більший у 5 разів, а отже
3*5=15
5*5=25
7*5=35
Також є другий б розвязування, через х:
нехай менший трикутник буде 3+5+7, а більший 3х+5х+7х, тоді
3+5+7=15,а 3х+5х+7х=75, тут так само 75:15= 5, - це шуканий х
відповідь та сама.
(Якщо не складно, поставте найкращу відповідь)
Объяснение:
Дано:
Окружность (O;r)
4-угольник ABCD - вписан в (O;r)
продолж.ВА пересек. продолж. CD в т. К.
Доказать:
∆BКС ~ ∆DКA
Доказательство:
Если 4-угольник можно вписать в окружность =>
=> сумма двух противоположных углов равна 180°:
Обозначим для удобства
Обратим внимание, что прямые КВ и КС можно расценивать как развернутые (180°) углы: уг.KAB и уг.КDC
Представив развернутые углы KAB и КDС,как сумму углов, их составляющих
(КАD + BAD и КDA + CDA соответственно) ,
выразим через них углы КAD и КDA:
А это означает, что:
Также, вследствие того что:
(по сути, АВС и КВС - это один и тот же угол,
DCA и КСА - аналогично).
Рассмотрим ∆BКС и ∆DКA:
Что и требовалось доказать.