Центр координат поместим в точку А , ось X в сторону точки F , ось Y в сторону точки С , ось Z в сторону точки А1. тогда координаты интересующих нас точек будут : А(0;0;0) А1(0;0;1) С(0;√3;0) В1(-0.5;√3/2;1) уравнение плоскости А1В1С ax+by+cz+d=0 подставим в него координаты точек А1 С и В1
с+d=0 √3b+d=0 -0.5a+√3/2b+c+d=0
положим d=1, тогда с=-1 b=-1/√3 a=-1/√3 нормализованное уравнение плоскости . к= √(1/3+1/3+1)=√(5/3) -1/√5x-1/√5y-√(3/5)z+√(3/5)=0 подставим координаты точки А(0;0;0) в нормализованное уравнение l =| √(3/5) |= √(3/5) - это искомое расстояние до плоскости.
Если трапецию можно вписать в окружность, то она равнобедренная. <CAD=<BCA (как внутренние накрест лежащие при параллельных АВ и CD и секущей АС. Значит и <ВАС=30° (АС - биссектриса) и треугольник АВС равнобедренный. Тогда его высота ВН - это и медиана. Значит ВН - это часть радиуса ВО, так как радиус, перпендикулярный хорде, делит ее пополам. Угол АВС этого треугольника равен 120°. Это вписанный угол, опирающийся на дугу АDC. Значит градусная мера дуги АDC в два раза больше и равна 240°. Тогда градусная мера дуги АВС равна АВС=360°-240°=120°. На эту дугу опирается центральный угол АОС, соответственно равный 120°. Итак, мы имеем четырехугольник АВСО, являющийся ромбом, и точка О лежит на стороне АD нашей трапеции. Следоательно АВ=ВС=АО=ОD=ОС=СD=R=4см. Проведем высоту трапеции СК. В равностороннем треугольнике ОСD высота СК равна (√3/2)*а, где а=4см. СК=2√3см. Площадь трапеции S=(BC+AD)*CК/2=12√3см². ответ: S=12√3см².
тогда координаты интересующих нас точек будут :
А(0;0;0)
А1(0;0;1)
С(0;√3;0)
В1(-0.5;√3/2;1)
уравнение плоскости А1В1С
ax+by+cz+d=0
подставим в него координаты точек А1 С и В1
с+d=0
√3b+d=0
-0.5a+√3/2b+c+d=0
положим d=1, тогда с=-1 b=-1/√3 a=-1/√3
нормализованное уравнение плоскости .
к= √(1/3+1/3+1)=√(5/3)
-1/√5x-1/√5y-√(3/5)z+√(3/5)=0
подставим координаты точки А(0;0;0) в нормализованное уравнение
l =| √(3/5) |= √(3/5) - это искомое расстояние до плоскости.
<CAD=<BCA (как внутренние накрест лежащие при параллельных АВ и CD и секущей АС. Значит и <ВАС=30° (АС - биссектриса) и треугольник АВС равнобедренный. Тогда его высота ВН - это и медиана. Значит ВН - это часть радиуса ВО, так как радиус, перпендикулярный хорде, делит ее пополам. Угол АВС этого треугольника равен 120°. Это вписанный угол, опирающийся на дугу АDC. Значит градусная мера дуги АDC в два раза больше и равна 240°. Тогда градусная мера дуги АВС равна АВС=360°-240°=120°.
На эту дугу опирается центральный угол АОС, соответственно равный 120°. Итак, мы имеем четырехугольник АВСО, являющийся ромбом, и
точка О лежит на стороне АD нашей трапеции. Следоательно
АВ=ВС=АО=ОD=ОС=СD=R=4см. Проведем высоту трапеции СК.
В равностороннем треугольнике ОСD высота СК равна (√3/2)*а, где а=4см. СК=2√3см.
Площадь трапеции S=(BC+AD)*CК/2=12√3см².
ответ: S=12√3см².