Рассмотрим прямоугольный треугольник АВС, где угол А прямой. Вписанная окружность касается катета АВ в точке М, где АМ=2, МВ=8. Точка касания окружности со стороной АС точка Р, центр окружности точка О. Линии проведенные к точкам касания из цетра вписанной окружности перпендикулярны сторонам и являютс радиусами. Тогда тогда АМОР является квадратом и стороны равны 2. АМ=АР как касательные к окружности, проведенные из одной точки. Рассмотрим треугольник ВМО. у него угол М прямой, МВ и МО являются катетами. Отношение МО к МВ равно тангенсу угла МВО (tg альфа).Значит тангенс МВО=2/8=1/4. Так как центр вписанной окружности лежит на пересечением биссектрис, то ВО является биссектрисой угла АВС и равен 2МВО. Найдем тагенс АВС по формуле двойного угла. он равен 2tg альфа деленное на
1-tg^2 альфа. Подставив значения получаем 8/15. A в треугольнике АВС катет АВ=2+8=10, tg АВС=8/15, найдем катет АС=АВ*tgАВС=10*8/15=80/15=16/3=5 1/3, а гипотенузу находим по теореме Пифагора.ВС^2=10^2+(16/3)^2=1156/9
ВС=34/3=11 1/3 Получаем АВ=10, АС=5 1/3, а ВС=11 1/3
у этих треугольников равны две стороны, общая - медиана, и половинки боковой стороны, на которые медиана делит эту боковую сторону, значит, разнятся только две стороны - другая боковая и основание, у двух этих треугольников, Если боковая сторона АВ=ВС равна х, основание АС=х+3, то х+х+х+3=21, откуда х= тогда периметр АВС равен х+х+3+х+3=21, или 3х=18, х=6,х+3=9, т.е. АВ=ВС=6см, АС=6+3=9, АС=9 см. для этих чисел выполняется неравенство треугольника, т.е. с такими сторонами треугольник существует.
6+9>6; 6+9>6; 6+6>9.
если основание АС=х, то боковая АВ=ВС=х+3, тогда периметр АВС равен х+х+3+х+3=21, откуда х=15/3=5, тогда АС=5см, АВ=ВС=5+3=8/см/ 8+8>5; 5+8=13>8; 5+8=13>8, т.е. задача имеет два решения
Рассмотрим прямоугольный треугольник АВС, где угол А прямой. Вписанная окружность касается катета АВ в точке М, где АМ=2, МВ=8. Точка касания окружности со стороной АС точка Р, центр окружности точка О. Линии проведенные к точкам касания из цетра вписанной окружности перпендикулярны сторонам и являютс радиусами. Тогда тогда АМОР является квадратом и стороны равны 2. АМ=АР как касательные к окружности, проведенные из одной точки. Рассмотрим треугольник ВМО. у него угол М прямой, МВ и МО являются катетами. Отношение МО к МВ равно тангенсу угла МВО (tg альфа).Значит тангенс МВО=2/8=1/4. Так как центр вписанной окружности лежит на пересечением биссектрис, то ВО является биссектрисой угла АВС и равен 2МВО. Найдем тагенс АВС по формуле двойного угла. он равен 2tg альфа деленное на
1-tg^2 альфа. Подставив значения получаем 8/15. A в треугольнике АВС катет АВ=2+8=10, tg АВС=8/15, найдем катет АС=АВ*tgАВС=10*8/15=80/15=16/3=5 1/3, а гипотенузу находим по теореме Пифагора.ВС^2=10^2+(16/3)^2=1156/9
ВС=34/3=11 1/3 Получаем АВ=10, АС=5 1/3, а ВС=11 1/3
у этих треугольников равны две стороны, общая - медиана, и половинки боковой стороны, на которые медиана делит эту боковую сторону, значит, разнятся только две стороны - другая боковая и основание, у двух этих треугольников, Если боковая сторона АВ=ВС равна х, основание АС=х+3, то х+х+х+3=21, откуда х= тогда периметр АВС равен х+х+3+х+3=21, или 3х=18, х=6,х+3=9, т.е. АВ=ВС=6см, АС=6+3=9, АС=9 см. для этих чисел выполняется неравенство треугольника, т.е. с такими сторонами треугольник существует.
6+9>6; 6+9>6; 6+6>9.
если основание АС=х, то боковая АВ=ВС=х+3, тогда периметр АВС равен х+х+3+х+3=21, откуда х=15/3=5, тогда АС=5см, АВ=ВС=5+3=8/см/ 8+8>5; 5+8=13>8; 5+8=13>8, т.е. задача имеет два решения