Объяснение: обозначим данные вершины А В С, а расстояние от точки до плоскости ВН. Так как расстоянием от точки к плоскости является перпендикуляр, то ВН перпендикулярно плоскости. У нас получился треугольник АВС с высотой ВН. ВН делит ∆АВС на 2 прямоугольных треугольника АВН и СВН, в которых наклонные АВ и ВС - гипотенуза, а ВН и АН и СН- катеты, причём АН и СН являются проэкция и на плоскость, найдём их по теореме Пифагора: АН²=АВ²-ВН²=37²-12²=
Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
ответ: АН=35см; СН=5см
Объяснение: обозначим данные вершины А В С, а расстояние от точки до плоскости ВН. Так как расстоянием от точки к плоскости является перпендикуляр, то ВН перпендикулярно плоскости. У нас получился треугольник АВС с высотой ВН. ВН делит ∆АВС на 2 прямоугольных треугольника АВН и СВН, в которых наклонные АВ и ВС - гипотенуза, а ВН и АН и СН- катеты, причём АН и СН являются проэкция и на плоскость, найдём их по теореме Пифагора: АН²=АВ²-ВН²=37²-12²=
=1369-144=1225; АН=√1225=35см
СН ²=АВ²-ВН²=13²-12²=169-144=25;
СН=√25=5см
Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов.
А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов.
ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.