Точка n - середина боковой стороны cd трапеции abcd. докажите, что сумма площадей треугольников adn и bcn равна половине площади трапеции. дайте полный ответ
Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120° подробнее - на -
АВ = ВМ, по условию, значит треугольник АВМ - равнобедренный. По свойству равнобедренного треугольника угол ВАМ = углу ВМА.
По свойству параллелограмма ВС параллельно АD, АС - секущая, значит угол АМВ = углу МАD, из вышесказанного следует, что угол ВАМ = углу МАD, значит АМ - биссектрисса
б) Решение:
АВ = СD по свойству параллелограмма,а АВ = ВМ из доказательства. Значит АВ = ВМ = СD = 8 см
МС = 4 по условию. ВС = ВМ + МС = 8 + 4 = 12. По свойству параллелограмма ВС = АD = 12
теперь можем найти площадь: Р = АВ + ВС + СD + DА = 8 + 12 + 8 + 12 = 40 см