Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Школьные Знания.com
Какой у тебя вопрос?
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Аккаунт удален
03.09.2020
Геометрия
5 - 9 классы
+5 б.
ответ дан
8. Табаны AC, B төбесінің сыртқы бұрышы 112°-қа тең болатын
теңбүйірлі АВС үшбұрышының бұрыштарын табыңдар.
1
СМОТРЕТЬ ОТВЕТ
Спросите о заданном вопросе...
ответ
5,0/5
6
Kazakhtan123
хорошист
16 ответов
413 пользователей, получивших
Берілген: Δ АВС-изоссельдер
∠В = 112 ° - сыртқы бұрыш
Табу бұрыштары ДАВС : ∠АВС -? ,ВС VSA -? , ∠Сіз-?
Шешімі.
Δ АВС қарастырайық :
АВ= ЖС (бүйір жақтары )
∠ВАС = вс ВСА = х (АС негізіндегі бұрыштар)
Үшбұрыштың сыртқы бұрышы онымен байланысты емес екі бұрыштың қосындысына тең, сондықтан :
∠СІЗ = ВС ВСА = В В : 2 ⇒ ВАС СІЗ = ВС ВСА = 112: 2 = 56°
Сыртқы ∠В және АВ АВС-іргелес бұрыштар .
Іргелес бұрыштардың қосындысы 180°
∠АВС = 180-В В = >АВ АВС = 180-112 = 68°
Объяснение:
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².