Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).