Точка р удалена на 12 см от центра окружности радиуса 15 см. через точку р проведена хорда длиной 18 см. найдите отрезки, на которые точка р делит эту хорду.
Если сумма двух углов равна 120°, то здесь дана сумма двух острых углов ромба, иначе сумма была бы 180 °
Если мы проведем высоту , то высота образует при вершине угол равный в 30°, а катет против этого угла равен половине гипотенузы. В данном случае гипотенузой является сторона ромба.
6\2 = 3 cм катет против угла в 30°
Найдем второй катет по теореме Пифагора
b² = c² - a²
b = √36 - 9 =√27 = 3 √3 см - второй катет, он же и высота и показывает расстояние между противоположными сторонами
24 \ 4 = 6 см - сторона ромба
Если сумма двух углов равна 120°, то здесь дана сумма двух острых углов ромба, иначе сумма была бы 180 °
Если мы проведем высоту , то высота образует при вершине угол равный в 30°, а катет против этого угла равен половине гипотенузы. В данном случае гипотенузой является сторона ромба.
6\2 = 3 cм катет против угла в 30°
Найдем второй катет по теореме Пифагора
b² = c² - a²
b = √36 - 9 =√27 = 3 √3 см - второй катет, он же и высота и показывает расстояние между противоположными сторонами
a) 84*, 84*, 96*, 96*.
б) 62,5*, 62,5*, 117,5*, 117,5*.
в) 71*, 71*, 109*, 109*.
Объяснение
Известно, что в параллелограмме противоположные углы и стороны равны.
a) Значит ∠А=∠С=84* и ∠В=∠D= (360*-2*84)/2=96*
б) ∠A-∠B=55*. Следовательно ∠A=∠B+55*.
Обозначим угол В через х, тогда угол А=х+55
Сумма углов в четырехугольнике равна 360*. Составим уравнение:
(х+х+55)*2=360;
4x+110=360;
4x=250;
x=62,5 - угол В;
Угол А=62,5+55=117,5*
в) Поправка: так как ∠А=∠С, то их разность не может быть 142*. Думаю, здесь закралась ошибка и "не минус", а "плюс". Тогда решаемо:
∠А+∠С=142* и ∠А=∠С=142/2=71*;
∠В=∠D=(360-142)/2=109*.