В равнобедренной трапеции ABCD основание BC 8 см, а высота CE 2корень из 3.Боковая сторона образует с основание AO угол 60 градусов. Найти площадь тарпеции
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
1. 75°, 105°, 75°, 105°.
2. Точка В лежит между А и С.
3. ∠АОС=24°; ∠СОВ=36°.
4. АВ=18 см; ВС=24 см; АС=30 см.
5. 1) 90°; 2) 34°; 3) 27 см.
Объяснение:
1. При пересечении двух прямых образуются две пары углов:
а) равные вертикальные;
б) Смежные, сумма которых равна 180°.
Сумма двух углов равна 150°. Значит каждый угол равен 150 °/2=75°.
Два других равны 180°-75°=105°.
***
2. АВ+ВС=АС; 4,1+3,5=7,6. Значит точка В лежит между А и С.
***
3. Пусть ∠АОС=2х. Тогда ∠СОВ=3х. Сумма этих углов равна 60°.
2х+3х=60°;
5х=60°;
х=12°;
∠АОС=2х=2*12=24°;
∠СОВ=3х=3*12=36°.
***
4. АВС - треугольник. Пусть катеты равны 3х см и 4х см. Тогда гипотенуза равна 5х см.
Р=АВ+ВС+АС;
3х+4х+5х=72 см.
12х=72;
х=6;
АВ=3х=3*6=18 см;
ВС=4х=4*6=24 см.
АС=5х=5*6=30 см.
***
5. 1) Раз BD - высота, то BD ⊥ AC и угол ADB=90°.
***
2) ∠A=∠BAK+∠KAC; ∠ВАК=17°.
AK- биссектриса ∠А. Значит ∠А=2*17=34°.
***
3) P ABC =AB+BC+AC;
AB=2*AM=2*4=8 см. (СМ-медиана делит сторону АВ на две равные части).
P ABC=8+9+10=27 см.
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см