Пусть E - точка пересечения прямых BC и AD. Если Е не совпадает с D (на чертеже изображен как раз один из таких случаев), то прямоугольные треугольники BED и CED равны по гипотенузе и катету: BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE, а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA. (Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD). Далее, треугольники BDA и CDA равны по сторонам и углу между ними (AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.
1) уравнение стороны AC АС : (Х-Ха)/(Хс-Ха) = (У-Уа)/(Ус-Уа). АС : -5 Х + 12 У - 25 = 0, 5 Х - 12 У + 25 = 0, у = 0,41667 х + 2,08333.
2) уравнение высоты BH. ВН: (Х-Хв)/(Ус-Уа) = (У-Ув)/(Ха-Хс). ВН: 12 Х + 5 У + 76 = 0, у = -2.4 х - 15,2.
3) уравнение прямой,проходящей через вершину B параллельно прямой AC. В || АC: (Х-Хв)/(Хс-Ха) = (У-Ув)/(Ус-Уа). В || АC: -5 Х + 12 У - 88 = 0, 5 Х - 12 У + 88 = 0. у = 0,41667 х + 7,33333.
BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE,
а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA.
(Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD).
Далее, треугольники BDA и CDA равны по сторонам и углу между ними
(AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.
1) уравнение стороны AC
АС : (Х-Ха)/(Хс-Ха) = (У-Уа)/(Ус-Уа).
АС : -5 Х + 12 У - 25 = 0,
5 Х - 12 У + 25 = 0,
у = 0,41667 х + 2,08333.
2) уравнение высоты BH.
ВН: (Х-Хв)/(Ус-Уа) = (У-Ув)/(Ха-Хс).
ВН: 12 Х + 5 У + 76 = 0,
у = -2.4 х - 15,2.
3) уравнение прямой,проходящей через вершину B параллельно прямой AC.
В || АC: (Х-Хв)/(Хс-Ха) = (У-Ув)/(Ус-Уа).
В || АC: -5 Х + 12 У - 88 = 0,
5 Х - 12 У + 88 = 0.
у = 0,41667 х + 7,33333.