P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см