Опустим высоту пирамиды из ее вершины на основание тк пирамида правьльная то она падает в точку пересечения медиан основания или бессектрис тк треугольник правильный опустим высоту на сторону основания то есть высоту треугольника в боковой грани из вершины пирамиды на сторону равностороннего треугольника.тогда угол между гранями будет являтся углом между oa и этой высотой где o-точка падения высоты пирамиды a -пересечение медианы со стороной пусть сторона основания равна a имеем длинна медианы или бессектрисы равна a*cos30=a*sqrt(3)/2 тк медианы делятся в отношении 2:1 ,то ao=a*sqrt(3)/6 тк треугольник боковой грани равнобедренный то опущенная высота в ней делит угол пополам тк она и бессектриса тогда из прямоугольного треугольника s-вершина пирамиды as=a/2tg(Ф/2) тк она еще и медиана тогда из прямоугольного треугольника soa находим искомый угол cos(a)=(a*sqrt(3)/6)/(a/2tg(ф/2))=sqrt(3)/3 * tg(ф/2)=tg(ф/2)/sqrt(3) a=arccos(tg(ф/2)/sqrt(3))
При симметрии относительно плоскости ОХУ координаты х и у точки не изменятся, а координата z поменяет знак на противоположный, так как симметричная точка будет находиться на таком же расстоянии от плоскости ОХУ, но с другой стороны.
Тогда центр сферы, точка с координатами (4; –2; 1) перейдёт в точку с координатами (4; –2; –1).
Уравнение сферы: (х – а)² + (у – b)² + (z – c)² = R²
(a; b; c) – координаты центра сферы, R – радиус сферы.
Тогда уравнение сферы с центром в точке с координатами (4; –2; –1) и радиусом 3 см примет вид:
При симметрии относительно плоскости ОХУ координаты х и у точки не изменятся, а координата z поменяет знак на противоположный, так как симметричная точка будет находиться на таком же расстоянии от плоскости ОХУ, но с другой стороны.
Тогда центр сферы, точка с координатами (4; –2; 1) перейдёт в точку с координатами (4; –2; –1).
Уравнение сферы: (х – а)² + (у – b)² + (z – c)² = R²
(a; b; c) – координаты центра сферы, R – радиус сферы.
Тогда уравнение сферы с центром в точке с координатами (4; –2; –1) и радиусом 3 см примет вид:
(х – 4)² + (у + 2)² + (z + 1)² = 3²
(х – 4)² + (у + 2)² + (z + 1)² = 9
Найдём объём шара:
V = 4/3∙πR³
V = 4/3∙π·3³ = 4∙π·9 = 36π