Найдите площадь треугольника со сторонами a=70 см,b=58 см и c=16 см.
Объяснение:
Фо́рмула Герона: Площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c).
S =√(p(p-a)(p - b)(p - c) ) , p =(a+b+c)/2 = (70+58+16)/2 =144/2 =72 (см)
S =√(72(72-70)(72 -58)(72- 16) ) =(72*2*14*56 ) = √((2*36)*(2)*(2*7)*(2³*7) =
Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
Найдите площадь треугольника со сторонами a=70 см,b=58 см и c=16 см.
Объяснение:
Фо́рмула Герона: Площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c).
S =√(p(p-a)(p - b)(p - c) ) , p =(a+b+c)/2 = (70+58+16)/2 =144/2 =72 (см)
S =√(72(72-70)(72 -58)(72- 16) ) =(72*2*14*56 ) = √((2*36)*(2)*(2*7)*(2³*7) =
((2⁶*6²*7²) = 2³*6*7 = 336 (см²)
* * * * * * * * * * * * * * * * * * *
a=2*35 ; b=2*29 ; c= 2*8. a₁=35 ; b₁=29 ; c₁=8. S₁ =√(p₁(p₁-a₁)(p₁ - b₁)(p₁ - c₁) )
S₁ = √(36*1*7*28) =6*2* 7 = 84 ; S =2²*S₁ = 4*84=336
* * * * * * * * * * * * * * * * * * *
R=2*r = 6. А высота основания СН = 9.
Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды.
Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO.
Рассмотрим прямоугольный треугольник ОCQ.
В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности).
Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)².
Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или
Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5.
Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150.
ответ: Vш ≈ 1150.