Точки A,B,C,D,E лежат на одной прямой. На плоскости отмечены точки F1 и F2 таким образом, что треугольники ABF1 и ABF2 равны. Докажите, что треугольники DEF1 и DEF2 тоже равны
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
1) На произвольной прямой f возьмем точку H и проведем к ней перпендикуляр BH равный высоте треугольника. 2) На этой же прямой f отложим точки M и N так, что BM равен медиане и BN равен биссектрисе (циркулем с острием в точке B). Заметим, что N лежит между M и H. 3) Через точку M проведем прямую g, перпендикулярную f. 4) Продолжим биссектрису BN до пересечения с g в точке K. 5) Построим серединный перпендикуляр к отрезку BK до его пересечения с прямой g в точке О. 6) Нарисуем окружность с центром О и радиусом OB до пересечения с исходной прямой f в точках A и С. Так построенный треугольник ABC является искомым.
Объяснение. Пусть ABC - произвольный треугольник. Если О - центр его описанной окружности, M - середина AС, K - точка пересечения прямой ОM с описанной окружностью, то ∠KBA опирается на дугу AK и ∠KBС опирается на дугу СК. Но дуги АК и СК сами равны, т.к. OK - серединный перпендикуляр к хорде AC. Значит, ∠KBA=∠KBС, т.е. КB - биссектриса угла ABC. Т.к. биссектриса единственна, то ее точка пересечения с серединным перпендикуляром к стороне AC есть К, т.е. лежит на описанной окружности, причем делит дугу AC пополам.
Собственно отсюда и следует построение. На шагах 1)-4) строим точку К. После чего надо построить окружность, проходящую через точки K и B и центр которой лежит на прямой g. Это мы делаем на шагах 5)-6), проведя серединный перпендикуляр к хорде BK и найдя О. Эта окружность с центром О и есть описанная около треугольника ABC, т.е. ее пересечения с прямой f дают точки A и C.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см
2) На этой же прямой f отложим точки M и N так, что BM равен медиане и BN равен биссектрисе (циркулем с острием в точке B). Заметим, что N лежит между M и H.
3) Через точку M проведем прямую g, перпендикулярную f.
4) Продолжим биссектрису BN до пересечения с g в точке K.
5) Построим серединный перпендикуляр к отрезку BK до его пересечения с прямой g в точке О.
6) Нарисуем окружность с центром О и радиусом OB до пересечения с исходной прямой f в точках A и С. Так построенный треугольник ABC является искомым.
Объяснение. Пусть ABC - произвольный треугольник. Если О - центр его описанной окружности, M - середина AС, K - точка пересечения прямой ОM с описанной окружностью, то ∠KBA опирается на дугу AK и ∠KBС опирается на дугу СК. Но дуги АК и СК сами равны, т.к. OK - серединный перпендикуляр к хорде AC. Значит, ∠KBA=∠KBС, т.е. КB - биссектриса угла ABC. Т.к. биссектриса единственна, то ее точка пересечения с серединным перпендикуляром к стороне AC есть К, т.е. лежит на описанной окружности, причем делит дугу AC пополам.
Собственно отсюда и следует построение. На шагах 1)-4) строим точку К. После чего надо построить окружность, проходящую через точки K и B и центр которой лежит на прямой g. Это мы делаем на шагах 5)-6), проведя серединный перпендикуляр к хорде BK и найдя О. Эта окружность с центром О и есть описанная около треугольника ABC, т.е. ее пересечения с прямой f дают точки A и C.