Параллелограмм состоит из двух одинаковых треугольников со сторонами 9, 10 и 17. Площадь такого треугольника можно найти через стороны по формуле Герона: p=(a+b+c)/2=(9+10+17)/2=18; S=корень (p*(p-a)*(p-b)*(p-c))=корень (18*9*8*1)=36; Площадь параллелограмма в основании 2S=72. 2) Пусть высота прямого параллелепипеда равна h. Боковые грани прямого параллелепипеда - это прямоугольники. Тогда площадь 4 прямоугольников боковой поверхности 2*(9h+10h)=38h, а площадь полной поверхности 38h+2*72=38h+144. Сказано, что площадь полной поверхности равна 334: 38h+144=334; 38h=190; h=5. 3) Объём прямого параллелепипеда равен произведению площади основания на высоту: V=72*h=72*5=360. ответ: 360.
25 см і 30 см
Объяснение:
Нехай ΔАВС - рівнобедрений, АВ = ВС, ∠ВАС < 60°. Бісектриса AD ділить висоту BЕ на відрізки BF = 27,5 см і FE = 16,5 см.
Знайти довжину відрізків BD та DC.
Розв'язання:
За властивістю бісектриси: АВ : АЕ = BF : FE = 27,5 : 16,5 = 5 : 3.
За теоремою Піфагора для ΔАВЕ:
AB² = AE² + BE²
(5x)² = (3x)² + (27,5 + 16,5)²
25х² = 9х² + 44²
16х² = 44²
(4х)² = 44²
4х = 44
х = 11
Отже, АВ = 5·11 = 55 см, АЕ = 3·11 = 33 см.
ВС = АВ = 55 см, АС = 2·АЕ = 33·2 = 66 см.
За властивістю бісектриси: ВD : DC = AB : AC = 55 : 66 = 5 : 6.
Нехай ВD = 5х, DC = 6х. Складемо рівняння:
BD + DC = BC
5х + 6х = 55
11х = 55
х = 5
ВD = 5·5 = 25 см
DC = 6·5 = 30 см
p=(a+b+c)/2=(9+10+17)/2=18;
S=корень (p*(p-a)*(p-b)*(p-c))=корень (18*9*8*1)=36;
Площадь параллелограмма в основании 2S=72.
2) Пусть высота прямого параллелепипеда равна h. Боковые грани прямого параллелепипеда - это прямоугольники. Тогда площадь 4 прямоугольников боковой поверхности 2*(9h+10h)=38h, а площадь полной поверхности 38h+2*72=38h+144. Сказано, что площадь полной поверхности равна 334:
38h+144=334;
38h=190;
h=5.
3) Объём прямого параллелепипеда равен произведению площади основания на высоту:
V=72*h=72*5=360.
ответ: 360.