Точки А і В симетричні відносно осі ординат і лежать на прямих у = х та у = -x відповідно. Знайдіть довжину відрізка АВ, якщо його серединою є точка M (0; - 2).
Начнем с углов, т.к это прямоугольный треугольник , то сумма острых углов равно 90, и получается пусть один угол будет x , а другой угол будет 2x. отсюда следует, x+2x=90 3x=90 x=30 один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
a+b=42, где b=1\2 a a+1\2a=42 3\2a=42 a=42×2;3=28 ответ 28 см
3x=90
x=30
один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
a+b=42, где b=1\2 a
a+1\2a=42
3\2a=42
a=42×2;3=28
ответ 28 см
∠В=90-2в(сумма острых углов прям тр-ка АВС равна 90
По теореме синусов (для тр-каАДВ)
АВ/sin(∠ADB)=AD/sinB
a/sin(90+b)=(a/√3)/sin(90-2b)
a/cosb=a/(√3 cos2b); b-бэтта
√3acos2b=acosb :a
√3cos2b=cosb
√3(2cos^2 b-1)-cosb=0
2√3cos^2 b-cosb-√3=0
cosb=x; 2√3x^2-x-√3=0
D=1+8*(√3)^2=1+24=25=5^2;x=(1+-5)/(4√3)
x=6/4 )/√3=(3√3)/(2*√3*√3)=√3/2
x=-4/(4√3)=-1/√3-посторонний, угол острый и cosb>0
cosb=√3/2; b=30grad
тогда ∠А=2*30=60град; ∠В=90-60=30град
Катет АС против угла в 30 градусов, АС=1/2АВ; АС=а/2
BC^2=a^2-(a/2)^2(по теореме Пифагора из тр. АВС)
ВС=√(a^2-a^2/4)=a√3/2
ответ а/2; а√3/2