Для любой правильной призмы справедливы формулы:
Площадь боковой поверхности:
Sбок = Pосн · h, где
Росн - периметр основания,
h - высота.
Площадь полной поверхности:
Sполн = Sбок + 2Sосн
Объем:
V = Sосн · h
____________________
a - сторона основания.
Правильная треугольная призма:
в основании лежит правильный треугольник, значит
Sосн =
Sбок = 3а · h
Sполн = 3a · h + 2 · a²√3/4 = 3ah + a²√3/2
Правильная четырехугольная призма:
в основании - квадрат, значит
Sосн = a²
Sбок = 4ah
Sполн = 4ah + 2a²
V = a²h
Правильная шестиугольная призма:
Sбок = 6ah
Sполн = 6ah + 2 · 3a²√3/2 = 6ah + 3a²√3
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60
Для любой правильной призмы справедливы формулы:
Площадь боковой поверхности:
Sбок = Pосн · h, где
Росн - периметр основания,
h - высота.
Площадь полной поверхности:
Sполн = Sбок + 2Sосн
Объем:
V = Sосн · h
____________________
a - сторона основания.
____________________
Правильная треугольная призма:
в основании лежит правильный треугольник, значит
Sосн =
Sбок = 3а · h
Sполн = 3a · h + 2 · a²√3/4 = 3ah + a²√3/2
____________________
Правильная четырехугольная призма:
в основании - квадрат, значит
Sосн = a²
Sбок = 4ah
Sполн = 4ah + 2a²
V = a²h
____________________
Правильная шестиугольная призма:
Sосн =
Sбок = 6ah
Sполн = 6ah + 2 · 3a²√3/2 = 6ah + 3a²√3
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60