Точки а1, в1, с1 є відповідно проекціями точок а, в і с, що лежать на одній прямій( точка в лежить між точками а і с) знайдіть відрізок а1с1, якщо ав=10 см, ас=16 см, с1в1=3 см.
Так как сумма углов параллелограмма ровна 360, а угол А в 2 раза меньше Б, то получим уравнение: 2x+x+2x+x=360, где x - меньший угол т.е. угол А и С, 2х - больший т.е. Б и Д. Сложив коэффициенты получим: 6х=360 - линейное уравнение. В итоге мы видим, что х=60 т.е. 6х=360 мы разделили на коэффициент при х (шесть) Проводим проверку 60 умножить на 2 = 120. 120+60= 180 - сторона БА или СД (без разницы) Получив одну сторону, мы складываем ее с другой 180+180 =360. ответ:60 градусов. Только проверку писать не надо, так как это чисто для себя.
∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.
Объяснение:
1) По теореме косинусов:
a^2 = b^2 + c^2 + 2bc*cos (α),
откуда
cos (α) = (b^2 + c^2 - a^2) / 2bc .
2) Обозначим углы и стороны:
∠ А = α
∠ В = β
∠ С = Δ
а = ВС (лежит против угла α)
b = АС (лежит против угла β)
с = АВ (лежит против угла Δ).
3) cos (α) = (b^2 + c^2 - a^2) / 2bc = (6^2 + 3^2 - 4^2) / (2*6*3) =
(36+9-16)/36 = 29/36 = 0,8055 55
По таблице косинусов находим, какой это угол:
α = arccos 0,8055 55 = 36,34°.
∠А = 36,34°.
4) Находим второй острый угол (он лежит против стороны 3 см и должен получиться меньше угла α):
cos (Δ) = (b^2 + а^2 - с^2) / 2ab = (6^2 + 4^2 - 3^2) / (2*6*4) =
(36+16-9)/48 = 43/48 = 0,8958 33
По таблице косинусов находим, какой это угол:
α = arccos 0,8958 33 = 26,38°.
∠С = 26,38°.
5) Находим третий угол:
180 - 36,34 - 26,38 = 117,28°.
∠В = 117,28°.
ответ: ∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.
В итоге мы видим, что х=60 т.е. 6х=360 мы разделили на коэффициент при х (шесть)
Проводим проверку 60 умножить на 2 = 120. 120+60= 180 - сторона БА или СД (без разницы) Получив одну сторону, мы складываем ее с другой 180+180 =360.
ответ:60 градусов.
Только проверку писать не надо, так как это чисто для себя.