Точки C1 и C2 лежат по разные стороны от прямой AB и расположены так, что AC1=BC2 и угол BAC1= углу ABC2. Докажите, что прямая C1C2 проходит через середину отрезка AB.
Тебе надо выучить названия углов и их свойства. Если я правильно помню, то например накрест лежащие равны, односторонние в сумме дают 180 градусов и тд. У тебя известны два угла. Тебе надо выяснить, какие они ( накрест лежащие, односторонние или соответственные). Дальше тебе нужно найти им пару.
Вот, например ∠4 + ∠6 = 78°, эти углы накрестлежащие, поэтому ∠4 =∠6 = 78°÷2 = 39°
Потом тебе надо найти вертикальные или смежные углуби если таковые есть:∠2 = ∠4, ∠8 = ∠6эти углы вертикальные,
поэтому ∠2 = 39° и ∠8=39°; ∠1 = ∠3 и ∠7 = ∠5, эти углы вертикальные
∠3 = 180° - ∠4 = 141°, ∠5 = 180° - ∠6 = 141°, так как ∠3 и ∠4, ∠5 и ∠6 - смежные
4. ∠1 = ∠3 и ∠7 = ∠5, так как эти углы вертикальные
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Тебе надо выучить названия углов и их свойства. Если я правильно помню, то например накрест лежащие равны, односторонние в сумме дают 180 градусов и тд. У тебя известны два угла. Тебе надо выяснить, какие они ( накрест лежащие, односторонние или соответственные). Дальше тебе нужно найти им пару.
Вот, например ∠4 + ∠6 = 78°, эти углы накрестлежащие, поэтому ∠4 =∠6 = 78°÷2 = 39°
Потом тебе надо найти вертикальные или смежные углуби если таковые есть:∠2 = ∠4, ∠8 = ∠6эти углы вертикальные,
поэтому ∠2 = 39° и ∠8=39°; ∠1 = ∠3 и ∠7 = ∠5, эти углы вертикальные
∠3 = 180° - ∠4 = 141°, ∠5 = 180° - ∠6 = 141°, так как ∠3 и ∠4, ∠5 и ∠6 - смежные
4. ∠1 = ∠3 и ∠7 = ∠5, так как эти углы вертикальные
Объяснение:
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.