Точки D, C принадлежат прямой a, точки F и Т принадлежат прямой b. Отрезки DT и FC пересекаются в точке О так, что DO = OT, СO = OF. Докажите, что прямые a и b параллельны. Для доказательства воспользуйтесь теоремой: если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то прямые параллельны.
Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3
Какие из указанных векторов перпендикулярны?
1) a {2; -6} и b {1; -3} ; 2) m {3; 9} и n {6; -2} ;
3) c {-2; 3} и d {6; 9} ; 4) h {5; -6} и l {5; 6}.
Объяснение:
Два вектора перпендикулярны если их скалярное произведение равняется нулю , х₁*х₂+у₁*у₂=0
1) a {2; -6} и b {1; -3} ,2*1+(-6)*(-3)=20 , 20≠0 , не перпендикулярны ;
2) m {3; 9} и n {6; -2} ;3*6+9*(-2)=18-18=0 , m⊥n ;
3) c {-2; 3} и d {6; 9} , -2*6+3*9=-12+27=15 , 15≠0 , не перпендикулярны ;
4) h {5; -6} и l {5; 6} , 5*5+(-6)*6=25-36=-11 ,-11≠0 ,не перпендикулярны ;