Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120° подробнее - на -
№ 1
1) AD - общая
2) уг.ADC=уг.ADB (по условию)
3) уг.CAD = уг.DAB (т.к. AD - биссектриса)
треугольники равны по стороне и двум прилежащим к ней углам
№ 2
проведем отрезок BD.
1) AB = DC (по условию)
2) AD = CD (по условию)
3) BD - общая ( по построению)
Треугольники равны по трем сторонам. А в равных треугольниках соответственные углы равны, значит, уг.А =уг.С
№ 3
Треугольники равны по трем сторонам, т.к.
1) основания равны
2) одна боковая сторона равны
3) значит и другие боковые стороны равны, т.к. треугольники равнобедреннные