Точки м i n не належать площині паралелограма авcd i pозміщені по один бік від неї. прямі ам і dn пара- лельні. доведіть, що площини амb i dnc паралельні.
2. прямую можно обозначать одной маленькой латинской буквой (a,b,
или двумя заглавными латинскими буквами, если этими буквами обозначены точки, расположенные на прямой (ab, cd)
3. у прямой много свойств: через одну точку можно провести бесконечно много прямых, через любые две точки можно провести только одну прямую, у любой прямой, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие
4. прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых называют пересекающимися.
6. утверждение, имеющее доказательство, т.е. его надо доказать.
9. их тоже несколько (равные отрезки имеют равные длины, часть отрезка всегда имеет длину, которая меньше длины отрезка, если точки на отрезке делят отрезок на части, то длина отрезка равна сумме длин этих частей.
10. длина отрезка.
11.это точка, которая делит данный отрезок на две равные части.
Пусть дана трапеция АВСD. Диагонали трапеции делят ее на 4 треугольника, из которых два подобны. △АОD подобен △ВОС. Отношение АО:ОС=13:3 ⇒ АD:ВС=13:3 ∠СВD=∠ВDА по свойству углов при параллельных прямых и секущей Но ВD - биссектриса ∠АВС ⇒ ∠СВD=∠АВD, ⇒ ∠ВDА=∠АВD. △АВD - равнобедренный с равными углами при основании ВD и равными сторонами АВ=АD Пусть коэффициент отношения оснований будет х. Тогда ВС:АD=3х:13х АВ=АD=13х Опустим высоту ВН на АD Треугольник АВН - прямоугольный. АН=(АD-ВС):2=5х АВ²-АН²=ВН² 169х²-25х²=576 144х²=576 х²=4 х=2 см ВС=2*3=6 см АD=2*13=26 см Площадь трапеции равна произведению высоты на полусумму оснований: S ABCD= BH(BC+AD):2=24*16=384 см² ---- [email protected]
ответ:
объяснение:
2. прямую можно обозначать одной маленькой латинской буквой (a,b,
или двумя заглавными латинскими буквами, если этими буквами обозначены точки, расположенные на прямой (ab, cd)
3. у прямой много свойств: через одну точку можно провести бесконечно много прямых, через любые две точки можно провести только одну прямую, у любой прямой, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие
4. прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых называют пересекающимися.
6. утверждение, имеющее доказательство, т.е. его надо доказать.
9. их тоже несколько (равные отрезки имеют равные длины, часть отрезка всегда имеет длину, которая меньше длины отрезка, если точки на отрезке делят отрезок на части, то длина отрезка равна сумме длин этих частей.
10. длина отрезка.
11.это точка, которая делит данный отрезок на две равные части.
Диагонали трапеции делят ее на 4 треугольника, из которых два подобны.
△АОD подобен △ВОС.
Отношение АО:ОС=13:3 ⇒
АD:ВС=13:3
∠СВD=∠ВDА по свойству углов при параллельных прямых и секущей
Но ВD - биссектриса ∠АВС ⇒
∠СВD=∠АВD, ⇒
∠ВDА=∠АВD.
△АВD - равнобедренный с равными углами при основании ВD и равными сторонами АВ=АD
Пусть коэффициент отношения оснований будет х.
Тогда ВС:АD=3х:13х
АВ=АD=13х
Опустим высоту ВН на АD
Треугольник АВН - прямоугольный.
АН=(АD-ВС):2=5х
АВ²-АН²=ВН²
169х²-25х²=576
144х²=576
х²=4
х=2 см
ВС=2*3=6 см
АD=2*13=26 см
Площадь трапеции равна произведению высоты на полусумму оснований:
S ABCD= BH(BC+AD):2=24*16=384 см²
----
[email protected]