В условии дано, что углы АBM и DBM равны, примем их за х. Дальше в условии сказано, что угол АВМ на 30% меньше чем угол DBC, а значит угол DBC на 30% больше чем угол АВМ, следовательно мы можем его записать как х+30.
Из этого всего у нас выходит уравнение:
х+х+х+30=180
А теперь мы его решаем как любое стандартное уравнение.
3х+30=180
3х=180-30=150
х=150:3=50 (угол АВМ и DВМ)
Следовательно угол АВD равен х+х, что равно 100%, а раз угол АВD равен 100% следовательно угол DBC равен 80%, так как 180-100=80
В треугольнике две стороны равны 10 см и 17 см, а высота, опущенная на третью, равна 8 см. найти наименьшую из площадей возможных треугольников
Объяснение:
S(треуг)= 1/2*а*h. Пусть АВ=17 см,ВС=10 см, ВН=8 см, ВН ⊥АС.
Возможные треугольники с высотой равной 8 см это ΔАВС, ΔАВН, ΔВСН. У всех перечисленных треугольников одинаковая высота, значит чем меньше основание , тем меньше площадь треугольника.
АС >АН и АС>СН, тк АС это сумма АН и СН.
Т.к ВН-высота, то АВ и ВС наклонные . А чем больше длина наклонной , тем больше проекция : АВ>BC⇒АН>СН.
Значит СН<AH<AC.
ΔCВН-прямоугольный , по т. Пифагора НС=√(10²-8²)=6 (см)
Угол АВD равен 100%
Объяснение:
В условии дано, что углы АBM и DBM равны, примем их за х. Дальше в условии сказано, что угол АВМ на 30% меньше чем угол DBC, а значит угол DBC на 30% больше чем угол АВМ, следовательно мы можем его записать как х+30.
Из этого всего у нас выходит уравнение:
х+х+х+30=180
А теперь мы его решаем как любое стандартное уравнение.
3х+30=180
3х=180-30=150
х=150:3=50 (угол АВМ и DВМ)
Следовательно угол АВD равен х+х, что равно 100%, а раз угол АВD равен 100% следовательно угол DBC равен 80%, так как 180-100=80
В треугольнике две стороны равны 10 см и 17 см, а высота, опущенная на третью, равна 8 см. найти наименьшую из площадей возможных треугольников
Объяснение:
S(треуг)= 1/2*а*h. Пусть АВ=17 см,ВС=10 см, ВН=8 см, ВН ⊥АС.
Возможные треугольники с высотой равной 8 см это ΔАВС, ΔАВН, ΔВСН. У всех перечисленных треугольников одинаковая высота, значит чем меньше основание , тем меньше площадь треугольника.
АС >АН и АС>СН, тк АС это сумма АН и СН.
Т.к ВН-высота, то АВ и ВС наклонные . А чем больше длина наклонной , тем больше проекция : АВ>BC⇒АН>СН.
Значит СН<AH<AC.
ΔCВН-прямоугольный , по т. Пифагора НС=√(10²-8²)=6 (см)
S(ΔCBH)=1/2*6*8=48 (см²)