Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
Так як за умовою ∠ABK = ∠CDM, кут суміжний з ∠ABK це ∠ABM;
кут суміжний з ∠CDM це ∠CDK , а так як ∠ABK = ∠CDM за умовою, то кути суміжні з цими кутами рівні, отже ∠ABM = ∠CDK.Трикутник ΔABD = ΔCDB так як AB = CD - за умовою, ∠ABM = ∠CDK, BD - спільна сторона трикутників.З рівності ΔABD = ΔCDB, слідує, що відповідні елементи трикутників рівні, отже ∠BDA = ∠CBD.За теоремою трикутник є рівнобедренним якщо два його кути є рівними між собою отже ΔBOD - рівнобедренний так як ∠BDA = ∠CBD.
Трикутник ΔAOB = ΔCOD за другою ознакою рівності трикутників так як AB = CD за умовою; ∠ABD = ∠BDC з рівності трикутника ΔABD = ΔCDB, а AO = OC = AD - OD = BC - OD(Так як ΔBOD - рівнобедренний,AD = CB з рівності трикутника ΔABD = ΔCDB ).
Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
4*9=6*х, х=6
СД=СМ+МД=6+6=12(см)
Так як за умовою ∠ABK = ∠CDM, кут суміжний з ∠ABK це ∠ABM;
кут суміжний з ∠CDM це ∠CDK , а так як ∠ABK = ∠CDM за умовою, то кути суміжні з цими кутами рівні, отже ∠ABM = ∠CDK.Трикутник ΔABD = ΔCDB так як AB = CD - за умовою, ∠ABM = ∠CDK, BD - спільна сторона трикутників.З рівності ΔABD = ΔCDB, слідує, що відповідні елементи трикутників рівні, отже ∠BDA = ∠CBD.За теоремою трикутник є рівнобедренним якщо два його кути є рівними між собою отже ΔBOD - рівнобедренний так як ∠BDA = ∠CBD.
Трикутник ΔAOB = ΔCOD за другою ознакою рівності трикутників так як AB = CD за умовою; ∠ABD = ∠BDC з рівності трикутника ΔABD = ΔCDB, а AO = OC = AD - OD = BC - OD(Так як ΔBOD - рівнобедренний,AD = CB з рівності трикутника ΔABD = ΔCDB ).