Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Найдём все расстояния между точками:
АВ = sqrt((2 - (-1)) ^ 2 + (7 - 4) ^ 2) = sqrt(9 + 9) = 3sqrt2
BC = sqrt((1 - (-1)) ^ 2 + (4 - 2) ^ 2) = sqrt(4 + 4) = 2sqrt2
AC = sqrt((2 - 1) ^ 2 + (7 - 2) ^ 2) = sqrt(1 + 25) = sqrt26
Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -