Трапеция abcd, ad||bc-основание, диагональ ас-биссектриса abc-равнобедренный, это все что я знаю, ничего не понимаю, наверно надо найти все углы, сделаете, честные 100 ваши.
Т.к один из углов при основании равен 60, следовательно и другой угол равен 60, следовательно в сумме два угла при основании равны 120, 360-120=240, следовательно два угла равны по 60, и другие два по 120 градусов, т.к это равнобедренный треугольник. Значит боковые стороны равны. Периметр равнобедренной трапеции сумма всех ее сторон. Если провести две высоты из улов, то мы получим прямоугольник и ее основания равны 15см, дальше через синус острого угла равного 60 градусам, находим боковые стороны прямоугольного треугольника, полученного нами, он равен: sin60=X:17 ( это мы нашли катет прямоугольного треугольника, 49-15=34, 34:2=17), дальше синус 60=0,9, значит: 0,9=X:17, отсюда x=0,9*1,5=1,35см сторона BH1 (ну это трапеция ABCD, проводим высоты BH1 и CH2, получим прямоугольные треугольники ABH1 и CDH2), отсюда AH1=17, значит DH2 тоже, BH1=CH2=1,35, отсюда по теореме Пифагора находим гипотенузу AB в квдрате=289+1,8225=290,8225, квадратный корень этого числа=17,05см. Отсюда периметр=17,05+17,05+15+49=98,1. Нет нельзя описать, и вписать окружность. Надеюсь все понятно, и я
в тр.АМС: по т.sin:
AM/sin угла АСМ=МС/sin угла МАС=2R
AM/sin (60-α)=МС/sin α=2R
АМ=2Rsin (60-α)
МС=2Rsin α
АМ+МС=2R(sin (60-α)+sin α)=2R*2sin30°cos(30-α)=2Rcos(30-α)
в тр.АBМ: по т.sin:
BМ/sin угла ВАМ=2R
BМ/sin (60+α)=2R
BМ=2Rsin(60+α)=2Rsin(90-(60+α))=2Rsin(90-(30-α))=2Rcos(30-α)
теперь:
АВ/sin60°=2R
АВ=2Rsin60°=2*√138*(√3/2)=√39
S ABC=(a²√3)/4(формула)⇒(39√3)/4
в тр.АМC: по т.cos:
AC²=AM²+МС²-2АМ*МС*сos угла М
39=AM²+МС²-2АМ*МС*сos120°...т.к.сos120°=-1/2
39=AM²+МС²+АМ*МС
S тр АМС=S АВСМ-S тр АВС=(49√3)/4-(39√3)/4=(5√3)/2
S тр АМС=1/2AM*MC*sin120°
(5√3)/2=1/2AM*MC*√3/2
AM*MC=10⇒AM²+MC²=29
(AM+MC)²=AM²+МС²+2АМ*МС=29+2*10=49
АМ+МС=7⇒
P=7+2√39