ozr99s6rea5z6eiz6zryzr6ozr6ryzd858fydy8u9vuv92d,uv9v2ru9ruh9xu9v2ruv9f2x9uvr22ubfc99uhrx9ubfxwvu92rx9fwuvu9w 9ugdw,you suov wdvu9dw,uv9fx2yg9rx2g9yxd29ugr2u9g1rgy91ry9ge1gx79xegu9x1r97g2ruv9x2ur9g9ygrx2yv9r2u9h2vou2royvfw0uh,9dwuv vu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr27h0rxxf9y2ry9gr2y9gvu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr2 2x9ugx7g0r7hr0uh0r27h0r70grch70cr2ug0r2u0grdhu0 is uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0 is is 0ubu0huh0cu0 0ubu0huh0cu0hcuh0 8hcr8hcrub0f2u0bt2u0b2ubc0 2tub0u0hr2 uh0r70hrcuhrcu9gr2c0uhrv0hurv28h
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Объяснение:
ozr99s6rea5z6eiz6zryzr6ozr6ryzd858fydy8u9vuv92d,uv9v2ru9ruh9xu9v2ruv9f2x9uvr22ubfc99uhrx9ubfxwvu92rx9fwuvu9w 9ugdw,you suov wdvu9dw,uv9fx2yg9rx2g9yxd29ugr2u9g1rgy91ry9ge1gx79xegu9x1r97g2ruv9x2ur9g9ygrx2yv9r2u9h2vou2royvfw0uh,9dwuv vu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr27h0rxxf9y2ry9gr2y9gvu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr2 2x9ugx7g0r7hr0uh0r27h0r70grch70cr2ug0r2u0grdhu0 is uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0 is is 0ubu0huh0cu0 0ubu0huh0cu0hcuh0 8hcr8hcrub0f2u0bt2u0b2ubc0 2tub0u0hr2 uh0r70hrcuhrcu9gr2c0uhrv0hurv28h
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.