1) Проекция В₁Д - это отрезок ВД. Величину его можно найти двумя Один из них - из треугольника ВСД по двум сторонам и углу между ними по теореме косинусов: ВД = √(4²+4²-2*4*4*cos 120) =√(16+16-(-16) = √48 =4√3. угол между B1D и плоскостью ABC равен:arc tg (6/(4√3) = frc tg (3 / (2√3)) = arc tg 0,86603 = = 0,713724 радиан = 40,89339°. 2) Угол между B1A и плоскостью BCC1 определяется в треугольнике АВ₁К, где АК - высота основы, В₁К - проекция диагонали АВ₁ на боковую грань. АК = √(4²- (4/2)²) = √(16 - 4) = √12 = 2√3. В₁К = √(6²+(4/2)²) = √(36+4) = √40 = 2√10. Тогда Угол между B1A и плоскостью BCC1 равен: α = arc tg (2√3 / 2√10) = √0.3 = 0,547723 = 0,501093 радиан = 28,71051°.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
Величину его можно найти двумя
Один из них - из треугольника ВСД по двум сторонам и углу между ними по теореме косинусов:
ВД = √(4²+4²-2*4*4*cos 120) =√(16+16-(-16) = √48 =4√3.
угол между B1D и плоскостью ABC равен:arc tg (6/(4√3) = frc tg (3 / (2√3)) = arc tg 0,86603 =
= 0,713724 радиан = 40,89339°.
2) Угол между B1A и плоскостью BCC1 определяется в треугольнике АВ₁К, где АК - высота основы, В₁К - проекция диагонали АВ₁ на боковую грань.
АК = √(4²- (4/2)²) = √(16 - 4) = √12 = 2√3.
В₁К = √(6²+(4/2)²) = √(36+4) = √40 = 2√10.
Тогда Угол между B1A и плоскостью BCC1 равен:
α = arc tg (2√3 / 2√10) = √0.3 = 0,547723 = 0,501093 радиан = 28,71051°.