Треугольник ABC, CD I (ABC). Найдите расстояние от точки D до прямой AB, если AB = 25, AC= 20, CB = 15, CD = 9. Изобразите перпендикуляр из точки D к прямой AB.
ответ:Найдём гипотенузу АВ=корень из(АСквадрат+ВСквадрат)=корень из(225+400)=25. Площадь треугольника АВС может быть найдена по двум выражениям. Приравняем их 1/2*АВ*ЕС=1/2*АС*СВ. Отсюда высота треугольника ЕС=(АС*СВ)/АВ=(15*20)/25=12. ЕС перпендикулярно АВ и является проекцией ЕД также перпендикулярной АВ.Тогда по теореме Пифагора находим искомое расстояние ЕД=корень из(ЕС квадрат+СД квадрат)=корень из(144+1225)=37.
ответ:Найдём гипотенузу АВ=корень из(АСквадрат+ВСквадрат)=корень из(225+400)=25. Площадь треугольника АВС может быть найдена по двум выражениям. Приравняем их 1/2*АВ*ЕС=1/2*АС*СВ. Отсюда высота треугольника ЕС=(АС*СВ)/АВ=(15*20)/25=12. ЕС перпендикулярно АВ и является проекцией ЕД также перпендикулярной АВ.Тогда по теореме Пифагора находим искомое расстояние ЕД=корень из(ЕС квадрат+СД квадрат)=корень из(144+1225)=37.
Объяснение: