Смотрите рисунок во вложении. По теореме Пифагора CB² = СД² + ВД². Отсюда ВД = √ (СВ² – СД²) = √(13² -12²) = √(169 – 144) = √ 25 = 5. Так как треугольник АВС – прямоугольный и СД – высота на АД, то треугольники АВС; АСД и СДБ являются подобными, поскольку углы А и В – общие углы для этих треугольников. Таким образом, из подобия имеем АД/СД = СД/ДБ. Отсюда АД = СД² /ВД = 12²/5 = 144/5 = 28,8 Так же из подобия имеем АС/СД = СВ/ВД. Отсюда АС = СД*СВ/ВД = 12*13/5 = 156/5 = 31,2
Так как треугольник АВС – прямоугольный и СД – высота на АД, то треугольники АВС; АСД и СДБ являются подобными, поскольку углы А и В – общие углы для этих треугольников.
Таким образом, из подобия имеем АД/СД = СД/ДБ. Отсюда АД = СД² /ВД = 12²/5 = 144/5 = 28,8
Так же из подобия имеем АС/СД = СВ/ВД. Отсюда АС = СД*СВ/ВД = 12*13/5 = 156/5 = 31,2