1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой . Дано: DABC - равнобедренный; AB - основание. CD - медиана .
Док-ть: CD - высота и биссектриса .
Доказательство:
CA=CD - по условию РA= РB - по свойству равнобедренного треугольника AD=DB т. к. CD - медиана , ЮDCAD=DCBD (по 1-ому признаку равенства треугольников) ЮРACD= РBCD, РADC= РBDC РACD=РBCD Ю CD - биссектриса РACD и РBCD - смежные и равны Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
Дано: равносторонний треугольник АВС, R = 20 см
Найти: P - ?
1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
Р = 3 * 20√3 = 60√3
ответ: 60√3
Дано:
DABC - равнобедренный;
AB - основание. CD - медиана .
Док-ть:
CD - высота и биссектриса .
Доказательство:
CA=CD - по условию
РA= РB - по свойству равнобедренного треугольника
AD=DB т. к. CD - медиана ,
ЮDCAD=DCBD (по 1-ому признаку равенства треугольников)
ЮРACD= РBCD, РADC= РBDC
РACD=РBCD Ю CD - биссектриса
РACD и РBCD - смежные и равны
Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm