По формуле вектора найдем стороны СД=√( х2-х1)²+(у2-у1)²=√( 6-2)²+(5-2)²= 5см так же и ДЕ= 5√2 и СЕ= 5, так как СЕ= СД=5, то треугольник СДЕ - равнобедренный, а биссектриса пусть СН является и биссектрисой и медианой и высотой, так как высотой то треугольник СНД- прямоугольный значит по теореме Пифагора найдем СН СН²= СД²- НД²= 25-(5√2/2)²=√12.5
так же и ДЕ= 5√2 и СЕ= 5, так как СЕ= СД=5, то треугольник СДЕ - равнобедренный, а биссектриса пусть СН является и биссектрисой и медианой и высотой, так как высотой то треугольник СНД- прямоугольный значит по теореме Пифагора найдем СН
СН²= СД²- НД²= 25-(5√2/2)²=√12.5