В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
9ky3ya
9ky3ya
14.08.2022 17:43 •  Геометрия

Треугольник со сторонами 30, 40 и 50 вращается вокруг большей стороны. Вычислите площадь образованной поверхности вращения.

Трикутник зі сторонами 30, 40 і 50 обертається навколо більшої сторони. Обчисліть площу утвореної поверхні обертання.

Показать ответ
Ответ:
vikulya30
vikulya30
23.05.2021 12:04

Расстояние равно (4√57)/19 см.

Объяснение:

В правильной шестиугольной пирамиде SABCDEF стороны основания равны 2 см , высота 4 см . Найдите расстояние от точки А до плоскости SBC.

1. Координатный метод.

Привяжем систему координат к пирамиде так, что ось 0Z совпадет с высотой пирамиды SO, а ось 0Х - пройдет по диагонали FC. Тогда ось 0Y пойдет по высоте правильного треугольника АОВ и имеем точки:  

A(-1;√3;0). S(0;0;4). C(2;0;0) и В(1;√3;0).

Уравнение плоскости SBC найдем по формуле:

|x-x1 x2-x1  x3-x1 |

|y-y1 y2-x1  y3-x1 | = 0.  

|z-z1 z2-x1  z3-x1 |

Тогда, подставив координаты точек, получим определитель:

|x-0  2     1 |

|y-0  0  √3 | = 0.  =>  x·| 0  √3 | - y·| 2   1 | + (z-4)·| 2    1 |  =   0.

|z-4 -4    -4 |                   |-4  -4 |       |-4 -4 |           | 0 √3 |  

(4√3)·x + 4y + 2√3·z - 8√3 = 0. - Уравнение с коэффициентами

А = 4√3, В = 4, С = 2√3 и D = -8√3.

Расстояние между точкой M(x;y;z) и плоскостью, заданной уравнением

Аx+By+Cz+D=0 находится по формуле:

d = |A·Mx+B·My+C·Mz+D|/(√(A²+B²+C²)). В нашем случае:

d = |-4√3+4√3+0-8√3|/(√(48+16+12)) = 8√3/√76 = (4√57)/19.

Геометрический метод.

Учитывая, что сторона основания ВС параллельна диагонали AD правильного шестиугольника, можем сказать, что расстояние между точкой А и плоскостью SBC равно расстоянию от точки О до этой плоскости.

Это расстояние - перпендикуляр из прямого угла треугольника SOH, где ОН - высота правильного треугольника ВОС, а SH - апофема боковой грани.

ОН = √3 (по формуле). SH = √(SO²+OH²) = √(16+3) = √19.

Высота из прямого угла равна h = a·b/c = 4·√3/√19 = (4√57)/19.


11.11 В правильной шестиугольной пирамиде SABCDEF стороны основания равны 2 см , высота 4 см . Найди
0,0(0 оценок)
Ответ:
mariana2411
mariana2411
01.05.2021 03:27

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота